
48 Testing Experience – 20 2012

Based on the experience from a project without TiP, reasons 

are given why the DTAP model is not suitable for testing 

modern public online services in the cloud. Apart from TiP 

being necessary, this paper also argues that TiP should be a 

regular test level. By comparing a test and the production 

environment, a view is given on how testing in production 

should be perceived as normal. Additional to this, a de?ni-

tion of TiP is given and the paper ends with questions for 

future research.

Introduction

Would you test di+erently if you could Test in Production (TiP)? Would you 

follow a di+erent strategy? In a project a public web service was created 

without TiP. Based on the experiences gained from this project, reasons 

are given why a test and acceptance environment from the DTAP model 

(Development, Test, Acceptance, and Production environment) are no 

longer suEcient (Aalst, 2006), (Pol, 2000). More generally, traditional test 

environments are not suitable for testing modern public online applica-

tions, such as web services in the cloud (Grundy, 2012). Besides that, TiP is 

a necessity and it is also argued that TiP should be a regular testing level. 

Based on the comparison between test and production environments, a 

view is given on how normal it should be to test in production. Addition-

ally, a deMnition of TiP is proposed and the paper ends with questions for 

future research.

The natural environment of the new public web service is illustrated using 

a test project performed at a large Dutch mobile telecoms provider. This 

service is an API and will be used in the future by external apps and on 

social platforms such as Facebook (API). An application (app) is typically 

a small, specialized program downloaded onto mobile devices. With the 

publication of the API in the cloud, multiple platforms can be supported 

without creating apps for them all. Using an app, and the web service 

behind it, end users can access their call and internet credits, address data, 

and invoices on their handsets in real time. The project needs to ensure 

the API is stable, has a high performance, is strictly secure, has a re-usable 

infrastructure and is easily extendable to cope with new functionality. 

All these requirements determine how the API will perform as a public 

web service for external users. Users are not only apps but also external 

developers. A few examples of the risks test management perceives are: 

unknown integrations, unknown diversity in contract data, and how this 

data will be presented. The API has no inTuence on the presentation to 

the end user. It is possible to use the API wrongly, whether deliberately 

or unintentionally. Can a tester be held responsible for defects between 

the API and an external app?

An end user has no clue about the number of steps between the app on his 

handset, the API, and other back-end systems. For him or her, everything 

behind the app is the cloud (forum). The end user will judge the quality 

of the API by the quality of the app. Without an early integration between 

the app and the API, all possible integration defects will become visible 

when the API is in production. The test strategy for the API project was 

“early integration test with complete infrastructure”. This strategy was 

implemented by dogfooding during development, and by system and 

integration testing. The API was developed using prototypes of the app. 

Examples of the prototype apps are SoapUI, a web browser, a Windows 

taskbar app, and a development app which all use the API (dogfooding). 

During acceptance level, a Mrst prototype of the external app was tested 

within the internal network. The integration tests were completed with a 

test of the process to download, install, and log into the app on a private 

mobile production network.

The moment the app was live and the API was used, the Mrst incidents 

were reported. For example, a customer had a rate plan that contained 

two bundle types: calling and text messages. But for each rate plan, only 

one usage progress bar (only one bundle type) could be shown in the app. 

A second example was that it was unclear to many end users how to log 

into the app. Customers were using their existing login account instead of 

a special access code. A third example was, if the customer had too many 

wrong login attempts then his account would be temporarily blocked. Here 

the API was using the standard HTTP error codes like ‘‘401 – Unauthorized” 

(error codes), which is returned if a customer cannot log in. But the app 

wanted to show a di+erent error message for the cases where the user 

was inputting a typo and when there were too many wrong attempts. 

Unfortunately, this di+erence could not be determined from error code 

401. Now the standard error code is extended with speciMc API error codes: 

401 – Unauthorized + 1102 – Invalid username or token of 401 – 1103 – Ac-

count has been temporarily locked out.

The app and the API were being fully integrated for the Mrst time in the 

production environment. Just before going to production, the idea was 

proposed to perform a number of tests in production because only then 

would a representative test environment become available. People were 

surprised by the idea and were against it because “testing in production is 

simply not done” (TestNet, 2012), (Groot, 2012). Within the project and with 

the mobile telecoms provider it was not possible to test in production. In 

the end, all tests need to provide insight into the risks and Mnd a way to 

reduce them. By adding TiP as a test level, the behavior and the possible 

risks of running in production for this service could be made visible.

In the introduction a test and production environment are mentioned, 

but what exactly are they and what are the di+erences?

By Marc van ’t Veer

What is testing in production and 

why should it be performed? 



49Testing Experience – 20 2012

Environments

A test environment is described as “an infrastructure that is needed 

to perform a test” in (Pol, 2000) and (Aalst, 2006). A test environment 

should be stable, controlled, and representative. There can be multiple 

types of environments with di+erent roles. TMap and TMap-Next deMne 

a test environment as “a combination of hard and software, connections, 

environment data, administration tools and processes wherein tests are 

being executed” (Pol, 2000) and (Aalst, 2006).

During the development cycles of an application, every environment 

within the DTAP model is used by di+erent consumers. White-box tests 

are executed on the development environment, the Mrst application tests 

are performed on the test environment, and the acceptance tests are 

executed on the “as-it-were-production” environment. Because the us-

age is distributed over these di+erent environments, development can 

continue without interfering with an acceptance test (environment). 

The maintenance organization has the responsibility to keep existing ap-

plications up and running on the production environment (Aalst, 2006). 

With each next level of the DTAP model, more systems are connected to 

each other and, thus, the environment becomes more comparable to 

the production environment. As a result, the applications become more 

robust and mature. The production environment is, thus, protected from 

low quality and remains stable.

When you look at the context of where the API and app need to operate, 

as stated in the introduction, a test environment is representative if it is 

not stable. Changes are continuously introduced, connections may drop, 

users are all external, the devices are very diverse, and there are connec-

tions being used that did not exist when the API was developed. The API’s 

natural environment is a publicly controlled domain. In Blokland, 2012 

and in Whittaker, 2011 an overview is given of how dynamic, complex, and 

diverse the environment of a modern public service is. If the goal is that 

a test should be executed in a representative environment, then this can 

only be done in production (Blokland, 2012).

A production environment is often compared to a test environment 

(production-environment). Production is not just an environment but 

the location where an application should perform “for real”. Comparing a 

test and production environment to each another is like comparing a zoo 

to nature (“The wild” as referred to in the animated movie Madagascar 

(Madagascar)). They may have similarities but the di+erences are plentiful. 

Also, the notion of “environment” sounds too much like a clear ordering of 

the context where the application is going to be used. In production the 

service is running “live” and the API and app are servicing the end user. The 

test environment is a parallel world where changes and new projects are 

being developed without any impact on the live service. The environment 

where the service is running is critical for the overall quality. If the test 

and production environment are more similar, the test results say more 

about the quality and possible risks. Microsoft‘s Seth Eliot made a very 

clear statement when he discussed the “Google Staged Approach” (Eliot, 

2012, spring STP). This approach follows four test levels and three of them 

are in production. The Mrst level is the traditional “upfront tests” in a test 

environment; the other three levels are user scenario execution, dogfood-

ing, and beta testing in production. Google is going fast to production 

because there is no added value in more upfront tests. Ten percent more 

upfront tests does not result in a ten per cent improvement in software 

quality (Whittaker, 2012), (Eliot, 2011-spring QASIG).

For some it may be “not done” to test in production, but what is the value 

of the test results if the traditional test environment is not representative? 

Should TiP be a normal test level?

How normal is testing in production?

If software is compared to a “normal” product or service, then it is clear 

that testing in production is not new. For normal products there are always 

tests in production. The Dutch Organization for Applied ScientiMc Research 

performs production tests for the introduction of the 4G LTE technology 

for fast mobile Internet in the Netherlands (TNO), (TNO-Huawei). The con-

sumers’ union also performs production tests on all kinds of products and 

services (consumentenbond). When making a little side step into law and 

liability, then there are more arguments to Mnd why it is normal to test in 

production. Software is more and more a daily good of the end customer 

and they expect the software to be reliable. The moment an incident is 

found, the supplier is responsible. Levy and Bell did research on product 

liability and what actions can be taken to minimize, transfer, or divide 

the risks (Bell, 1990). With a legal action against a supplier there is the 

possibility to make the rights and obligations between the supplier and 

the customer clearer. The insight into possible risks and liability contrib-

utes to “a positive relation between the supplier and his customers” (Bell, 

1990). By creating jurisdiction about rights and obligations, expectations 

are more realistic and there is a greater chance that possible problems in 

the software are discovered, admitted, and corrected before any loss or 

damage is done (Bell, 1990). The law is di+erent on products and services. 

The sale of products is subject to many damage and warranty laws (Bell, 

1990). These laws do not apply to the sale of a service. The website of 

ICTRecht (ICT and law) gives basic information for software developers 

(ICTRecht). This information also includes how to handle liability cases. A 

developer can be liable for incidents that occur in production (ICTRecht). 

Software will become a “normal” product and customers expect that the 

same laws on damage and warranty will become applicable. When look-

ing at product quality, a product should work in production as speciMed.

Continued product quality control does not stop the moment a product is 

in production. Within the traditional V-model for software development, 

each next phase is validated by a test level and so the quality is monitored 

(Aalst, 2006). The last test level in the V-model is a production acceptance 

test (PAT), which is generally done by the maintenance organization. In the 

model there is no test level deMned after the software is accepted. ISTQB 

added a “Maintenance and operation” phase to perform maintenance 

tests. Maintenance tests are also called “in-service inspection and test-

ing”’ (maintenance-testing). These tests focus on regression defects and 

are comparable to a yearly car checkup (General Periodic Inspection or, 

in Dutch, ”APK”). If a car does not pass the check-up then it needs to be 

repaired if it is to continue on the road. If you look back at the V-model, 

these “in-service” tests should be a part of the model. When these tests 

are added to the model it becomes a circle, since the expected and the 

real behaviors are compared in production. If you look at the developers 

at Google, you see that they have much more direct contact with the end 

users than traditional developers, since Google follows a fundamentally 

di+erent development model (“Google Staged Approach”) for cloud ser-

vices. Traditionally, the requirements of the end users are constantly 

translated between the developer and the tester because there is no 

direct contact between them. According to Whittaker, 2011 there will be 



50 Testing Experience – 20 2012

much more testing in production in the future and the whole develop-

ment model will change.

TiP is necessary to perform good tests for modern public online services 

such as an API. But what is TiP exactly, and what is its deMnition?

DeAnition of testing in production

To have a better understanding of what Testing in Production is, a brief 

idea is Mrst given of what TiP is and what it is not. TiP is not a replacement 

for any test level such as system or acceptance tests. This means that TiP 

should not be done because there was no more time left or because it’s 

cheaper. The goal of TiP is not to check whether an installation was correctly 

performed on production. TiP is not a production acceptance test, because 

these tests are done before the software goes to production and their goal 

is also di+erent. A PAT looks at whether the software is easy to maintain 

rather than how it is used or behaving in production (Aalst, 2006).

TiP is described as testing of software which is installed and executed on 

the hardware of the end user and is used for real. Wiki deMnes TiP as follows:

‘Production testing is when you are testing a real live system, either about 

to go live or with live users. It is needed because having software working 

on the developer’s computer is no guarantee that it will work in the client’s 

installation.’ (TiP)

Seth Eliot deMnes TiP as follows:

‘Testing in production (TiP) is a set of software testing methodologies that 

utilizes real users and production environments in a way that both leverages 

the diversity of production, while mitigating risks to end users.’ (Eliot, 2012)

Important elements from these deMnitions are that tests are done by 

or for end users on real live systems with the focus on its behavior in its 

diverse environment.

With the implementation of TiP testing methodologies and techniques 

that use the diversity of the production environment, the risks of end 

users can be minimized. The diversity of the production environment 

functions as a lever to Mnd defects that can only be found there. When 

going back to the central question, Why should we test in production? 

We can see that there is not only something missing in the deMnitions 

(for which types of application is TiP applicable) but they focus too much 

on methodologies. Eliot is explaining that TiP is meant for (web) services 

(Eliot, 2011) and deMning TiP as a test type, while the reasoning in this 

paper is that TiP is a test level. A test level is a group of test activities that 

are combined, executed, and managed (Aalst, 2006). A test type is a group 

of test activities that tests the software or a part of it on a combination 

of quality attributes (Aalst, 2006).

Testing in production can be compared to system testing. A system test 

is done by a supplier on a lab or test environment, with the goal that the 

developed system complies with the functional and non-functional speci-

Mcations, and with the technical design (Aalst, 2006). The di+erence is that 

TiP is using the production environment and that behavior is inspected 

with the possible edge cases that occur naturally there. These edge cases 

are unthought-of and unpredictable. By using the production environment 

with real users, this diversity is used for testing. With system testing the 

focus is on expected behavior and with TiP the focus is on unexpected 

behavior. Within this new test level, all the test methodologies of Eliot 

can and should be used like synthetic tests in production or controlled 

test Tight (Eliot, 2012).

When combining all previous points then the total deMnition of TiP be-

comes:

‘Testing in production is a combined group of test activities that uses the 

diversity of the production environment and real end user data to test the 

behavior of the developed service in the live environment, so minimizing 

the risks for the end users.’

When TiP is introduced into an organization, the whole development 

model changes. Before TiP is added then it is mainly BUFT or “big up-front 

testing” that is executed. This means that all tests are done before the 

software goes live (BUFT). But, with TiP, the developers have more direct 

contact with the end users and the testers do not need to act like end us-

ers. The test environment becomes an internal production environment 

where testing is done by dogfooding and bringing your own device. When 

the software is stable, then testing is done in production via beta testing, 

for example (Whittaker, 2012).

Further research

One of the Mrst questions to answer is: if tests are executed in production, 

how can this be done without inTuencing the continuity and stability for 

the real end users? Other questions are: how can regression testing or 

test harness be used for monitoring and what does it look like? (Riungu-

Kalliosaari, 2012) When a test strategy is put forward for TiP, there should 

be a discussion with the operations department because the monitoring 

of all systems can be inTuenced by TiP. Operations is constantly monitoring 

the production environment, but when testers are testing in production 

they are also monitoring both with their own goal. Between test and 

operations a new role can be created like “Testops” (Eliot, 2012). The mo-

ment TiP is executed, it must be clear which strategy can be used to cover 

the risks. If there is a di+erence in responsibility between Mxing defects 

in the test environments and incidents in the production environment, 

what will happen when you Mnd a defect in production? Who is going to 

Mx it? Who is paying for this? And when should it be Mxed? There should 

be more research done on how TiP can be introduced into an organiza-

tion and which techniques can be used to Mnd di+erent types of defect.

End notes

Books

 Aalst, L. van der, Baarda, R., Broekman, B., Koomen, T., Vroon, M., 

2006. TMap® Next, voor resultaatgericht testen,Tutein Nolthenius. 

p. 44-51, p. 68, p. 82, p. 412, p. 419

 Bell, S. Y., Levy, L. B., 1990. Software product liability: Understanding 

and minimizing the risks, Berkely Technology Law Journal, Boalt 

Hall School of Law, University of California at Berkeley, California. 

Vol. 5, issue 1, 2–3. Available at: http://www.law.berkeley.edu/jour-

nals/btlj/articles/vol5/Levy.pdf

 Blokland, K., Mengerink, J., 2012. Cloutest, Testen van cloudservices. 

Tutein Nolthenius. p. 162–170



51Testing Experience – 20 2012

 Eliot, S., 2012. Testing in Production A to Z, TiP Methodologies, Tech-

niques, and Examples, Software Test Professionals, p. 5, p. 55, p. 19, 

p. 20. Available at: http://www.setheliot.com/blog/a-to-z-testing-

in-production-tip-methodologies-techniques-and-examples-at-

stpcon-2012/, http://www.softwaretestpro.com/item/5477

 Eliot, S., 2011. Testing in Production, Your Key to Engaging Custom-

ers, Quality Assurance Special Interest Group, p. 19–20. Available 

at: http://www.qasig.org/presentations/QASIG_Testing_in_Produc-

tion-Engaging_Customers.pdf

 Groot, D. J. de, 2012. TiP and the iceberg, Professional Tester, June. 

Available at: professionaltester.com

 Grundy, J., Kaefer, G., Keong, J., Liu, A., Guest Editors’ Introduction: 

Software Engineering for the Cloud. IEEE Software, March–April 

2012, vol. 29, no. 2, p. 26-29, Available at: http://csrc.nist.gov/publi-

cations/nistpubs/800-145/SP800-145.pdf

 Riungu-Kalliosaari, L., Taipale, O., Smolander, K., Testing in the 

Cloud: Exploring the Practice. IEEE Software, March–April 2012, p. 

46–51

 Pol, M., Teunissen, R., Veenendaal, E. van, 2000. Testen volgens 

TMap®, Tutein Nolthenius, 5th edition, p. 495

 Groot, D. J. de, Kramer, A., Loenhoud, H. van, Prins, A., Ro, J., Schoots, 

H., Vorst, P., 2012. Bepaal je koers!, Toekomst en trends in testen, 

TestNet, p. 75-81

Internet sources

(API)

 API deMnition: http://en.wikipedia.org/wiki/Application_program-

ming_interface#Use_of_APIs_to_share_content

 Project API: https://capi.t-mobile.nl/

 Customer API documentation: https://capi.t-mobile.nl/documenta-

tion

 My T-Mobile app: http://www.t-mobile.nl/service-en-contact/apps/

my-t-mobile-app

(app)

 DeMnition of app: http://dictionary.reference.com/browse/app

(BUFT)

 http://blogs.msdn.com/b/seliot/archive/2010/01/20/building-

services-the-death-of-big-up-front-testing-buft.aspx

(dogfooding)

 http://harveynick.com/blog/2011/08/26/dogfood-nom-nom-nom/ 

and http://en.wikipedia.org/wiki/Eating_your_own_dog_food

(error codes)

 http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

(environment)

 Why are there so many environments? http://askville.ama-

zon.com/environments-software-development/AnswerViewer.

do?requestId=2956413

(forum)

 Comment on the T-Mobile Forum (in Dutch): https://forum.t-

mobile.nl/belstatus-398/de-online-belstatus-gadget-p-edge-werkt-

niet-meer-151973/

(consumentenbond)

 http://www.consumentenbond.nl/over/Onderzoek/onderzoek_en_

verslagen

(ICTRecht)

 http://ictrecht.nl/diensten/juridische-producten/starterspakket/

softwareontwikkelaars/ and http://blog.iusmentis.com/2011/09/19/

ben-ik-aansprakelijk-voor-de-fouten-in-mijn-software/

(Madagascar)

 http://en.wikipedia.org/wiki/Madagascar_(2005_llm), http://www.

imdb.com/title/tt0351283/

(maintenance testing)

 http://en.wikipedia.org/wiki/Maintenance_testing

(production environment)

 http://www.head-l.org/t/167356/what-does-the-word-produc-

tion-environment-mean and http:/www.techopedia.com/delni-

tion/8989/production-environment

(TiP)

 http://wiki.answers.com/Q/What_is_production_testing_in_Soft-

ware_development#ixzz266VbdjZh

(TNO)

 http://www.tno.nl/groep.cfm?context=thema&content=markt_pro

ducten&laag1=897&laag2=191&item_id=377

(TNO-Huawei)

 http://www.nu.nl/internet/2601169/tno-en-huawei-testen-lte-in-

nederland.html

(Whittaker, 2012)

 http://www.computer.org/cms/Computer.org/dl/mags/so/2012/02/

extras/mso2012020004s.mp3

(Whittaker, 2011)

 http://blog.utest.com/testing-the-limits-with-googles-james-whit-

taker-part-i/2011/05/ and http://blog.utest.com/james-whittaker-

the-future-of-software-testing/2008/11/ ◼

Marc van ’t Veer is a test consultant at Polteq and has 

well over 5 years of experience as a coordinator and 

system tester. He has gained a lot of testing experience 

in technically oriented contexts, such as telecoms, SOA, 

test automation, development of stubs and drivers, 

and testing API’s. In his current project he provides a 

lot of training and he manages the outsourcing of 

testing to India. He holds a MSc. from the University 

of Eindhoven in the Netherlands and holds the ISTQB advanced certiMcate 

in software testing.

> about the author


