
BDD – Hot or Not?

https://www.polteq.com/en/knowledge/bdd-hot-or-not/ | 1

Behaviour Driven Development (BDD) in Cucumber is the ultimate solution. BDD in
Cucumber won’t get the job done. Or is there a more nuanced approach? On
September 22 Matt Wynne, author of “The Cucumber Book”, visited Eindhoven to
tell about the added value and the limitations of BDD. This is my version of his
story with some editorial notes.

An age-old problem that software development faces, is the gap between requirements and
implementation. The client asks for a portal, but actually means he wants an intranet. The
software development team interprets a portal as a portal. Lo and behold, the first
misunderstanding.

It’s true that we can come a long way if we apply the Agile principles correctly. But more
often than not, many (Agile) projects become too technical, causing shared understanding to
decrease.

BDD aims to increase shared understanding about the desired behaviour of software. In other
words, correct application of BDD brings the problem domain (business) and the solution
domain (software development) closer to one another.

https://pragprog.com/book/hwcuc/the-cucumber-book
https://pragprog.com/book/hwcuc/the-cucumber-book

BDD – Hot or Not?

https://www.polteq.com/en/knowledge/bdd-hot-or-not/ | 2

Cucumber
Cucumber is a collaboration tool which facilitates in forming a shared understanding of the
desired behaviour of software. Cucumber executes specifications which are written in natural
language. These specifications are called features. Besides being specifications, they function
as automated acceptance tests and (living) documentation. This makes BDD a Test-First
approach.

Features and their respective scenarios ought to be written by the three amigos. These are:
the product owner/business analyst, the tester and the developer. Their conversation about
features and scenarios increase shared understanding and help reveal “unknown unknowns”,
better known as contingent obscurities.

Gherkin is the syntax for writing features. An example of a feature written in Gherkin can be
seen below.

Feature: Login
Scenario: Successful Login
Given I am not logged in
When I login with user “test” and password “test”
Then I should be logged in and see my profile

A team should consider setting standards for the desirable level of detail in features. Another
important aspect is clarifying semantics in order to form a ubiquitous language. But it would
be too much of a digression to discuss these aspects in this article.

BDD – Hot or Not?

https://www.polteq.com/en/knowledge/bdd-hot-or-not/ | 3

BDD is also known as Specification By Example, because a feature is an executable
specification. Nothing actually happens when a feature is executed. Step definitions are
required to make a feature do something. An example of the When-step in Ruby:

When(/^I login with user “(.*?)” and password “(.*?)”$/) do |username, password|
@username = username
@password = password
…
end

After writing step definitions and executing the feature, tests fail. Failing tests trigger us to
write the necessary code in the test automation framework and/or the application (system
under test). But it’s not over when tests pass. Refactoring still needs to be done. Refactoring
is changing the code’s structure without changing its behaviour. Refactoring aims to increase
reusability, readability and efficiency. The feature needs to be executed again after
refactoring. This is to make sure the software still displays the desired behaviour.

Life after BDD
“We all know that silver bullets are bullshit”, with this statement Matt Wynne started his
discourse about life after BDD. Applying BDD can be advantageous. Yet, if one sees it as the
ultimate solution, the disadvantages outweigh the advantages. A software development team
needs to realise there is life after BDD. Matt explained this by talking us through the six
phases software development teams (usually) go through as they learn to apply BDD.

Phase one is called: “Let’s make toast the American way! I’ll burn the toast, you scrape it”.
First developers make software. Then testers manually execute tests and find bugs. A project
manager prioritizes bugs, developers fix them and the story repeats itself starting with
testers finding bugs.

Phase two is called: “I’ll burn the toast, you’ll automatically scrape it”. First developers make
software. Then testers write automated tests, execute those tests and find bugs. A project
manager prioritizes bugs, developers fix them and the story repeats itself starting with
testers finding bugs.

This is not BDD, even if a team were to use Cucumber. The team is building software
backwards because verification of correct behaviour (acceptance criteria) is still an
afterthought.

Phase three is called: “Three amigos”. First, the three amigos have conversations. These
result in understandable features and their respective scenarios. Developers write code to
make features pass. Testers automate (different) tests. Testers find bugs during exploratory

BDD – Hot or Not?

https://www.polteq.com/en/knowledge/bdd-hot-or-not/ | 4

testing. A project manager prioritizes bugs, developers fix them and the story repeats itself
starting with testers finding bugs.

Phase four is called: “Test first”. First, the three amigos have conversations. These result in
understandable features and their respective scenarios and clear, abstract rules. Developers
automate the step definitions and test help them in finding the edge cases. Bugs are now
called new scenarios. So testers find new scenarios during exploratory testing. A project
manager prioritizes the new scenarios, and the story repeats itself starting with adding
scenarios.

Phase five is called: “Disillusionment”. Builds take forever and fail frequently. There are
flickering scenarios which fail arbitrarily. The amount of features has increased dramatically
and there are way too many slow tests on UI level. This is also known as the ice cream cone
anti-pattern. The team now shares an enemy: Cucumber.

Many teams give up at this point. They put the blame on Cucumber. But it’s not Cucumber’s
fault. When teams go through phase five, it’s time they examine their features. Does a given
scenario still have added value? If not, delete it. If so, can the test be pushed down the test
level stack? If it’s possible to turn it into a unit (integration) test do it and delete the scenario.

Phase six is called: “Transcendence”. The whole team has a shared understanding of the
problem domain and is able to make a fitting solution. Scenarios are readably and
understandable for everyone. The emphasis is no longer on the amount of scenarios, but the
abstract rules embedded in those scenarios. There is a sound test (automation) strategy
which determines on which level test have to be specified.

Conclusion
BDD is a useful practice when it’s combined with other good practices. BDD is no silver bullet,
but a way to come to a shared understanding. Cucumber facilitates in forming that
understanding. BDD is hot and Cucumber is useful with
in these boundaries.

David Baak, test specialist at Polteq

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/%20
http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/%20

